

Materials for Cryogenic Hydrogen **Storage Technologies**

Project ID# ST200

PNNL: (Lead) Kevin Simmons (PM) Daniel Merkel Ba Nghiep Nguyen Kenneth Johnson David Gotthold Aashish Rohatgi

ORNL: Amit Naskar Chris Bowland ANL: Hee-Seok Roh Rajesh Ahluwalia **SNL: Chris San Marchi**

PNNL-SA-141908

PNNL is operated by Battelle for the U.S. Department of Energy

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline and Budget

Project Start Date: 04/01/18

FY18 DOE Funding (if applicable): \$ 250K

• FY19 Planned DOE Funding (if applicable):

PNNL: \$649K

SNL: \$100K

ANL: \$100K

ORNL: \$150K

Total DOE Funds Received to Date: \$999K

Barriers

G: Materials of Construction

L: Lack of Tank Performance Data and Understanding of Failure

Mechanisms

F: Codes and Standards

Partners

Relevance

Objectives:

- Develop a material acceptance process that will provide detailed information to evaluate specialty resins, vessel liner options, and carbon fiber composite materials through thermomechanical testing.
- Investigate cryogenic material systems for use in 350+ bar cryo-compressed and sub-ambient (~20-30K) hydrogen pressure vessels.

Technical Barrier	Project Impact	
Cryo-compressed hydrogen storage limits choice of materials	Improve resins, engineered fibers, and composites for cryogenic performance	
Lack of material properties data and understanding of failure mechanisms at cryogenic temperatures	Investigate material properties throughout - 253°C to +120°C	
Lack of applicable codes and standards for materials acceptance	Develop acceptance testing criteria for base materials and engineered systems	

- Experimentally test resin, carbon fiber composite, and welded aluminum and steel liner systems from -253°C to 120°C temperature range.
- Combined testing includes:
 - Cryogenic temperature tests
 - Thermal cycling from cryogenic to elevated temperatures (-253°C to +120°C)
 - Off-gassing under vacuum (10-6 torr)
 - Fatigue cycling at non-ambient conditions equivalent to the stress states in the composite at the maximum allowable working pressure and standard test cycles
- Numerical modeling will use the experimental results to predict the relative change in full tank burst properties at different temperatures

Project Tasks

Task 1:

Industrial Survey (PNNL)

- Collaborators from the pressure vessel and material supplier industry
- Focus on methods to qualify materials for use in cryocompressed or cold gas hydrogen pressure vessels

Task 2:

Qualification Roadmap (PNNL)

 Illustrate path forward from coupon-level to full tank modeling and validation

Task 3:

Composite Test Methods and Geometries (PNNL/ORNL)

- Investigate performance of individual materials that make up a filament wound composite overwrapped pressure vessel
- Evaluate material properties at various temperatures

Task 4:

Liner Test Methods and Geometries (PNNL/SNL)

- Investigate polymeric and metallic liner material properties and weld performance
- Evaluate cryogenic mechanical fatigue performance
- Investigate TIG and friction stir weld performance

<u>Task 5:</u>

Temperature Effects Testing (PNNL)

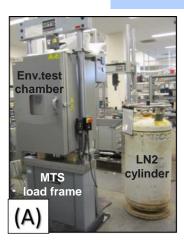
- Test mechanical properties of Task 3 at temperatures from -253°C to +120°C
- Includes tensile, short beam shear, shear, and fatigue testing as a function of thermal cycling

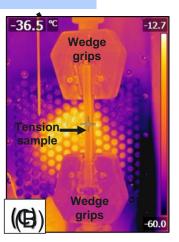
Task 6:

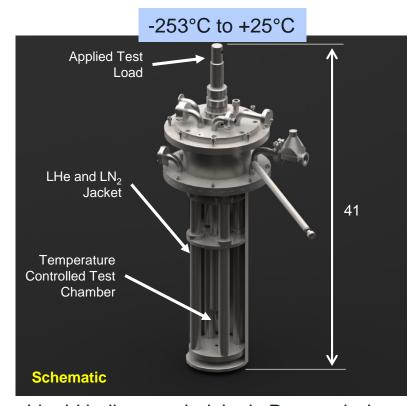
FEA of Tank-Level Performance (PNNL/ANL)

Estimate tank
 pressure retaining and
 burst performance as
 a function of operating
 temperature using
 FEA methods for
 filament wound
 composite tank
 cylinders

Task 7:


Acceptance Testing Criteria (PNNL)


 Review allowable coefficient of variance and statistical requirements based of test data scatter


Approach PNNL's Cold/Cryo-temperature Mechanical Testing Capabilities

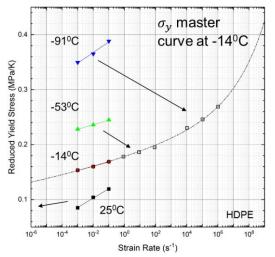
-130°C to +315°C

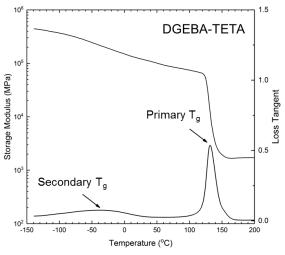
- Mechanical Test System (MTS) load frame with liquid nitrogen-cooled environmental chamber
- Strain measurement
 - Extensometer capabilities to -253°C
 - Digital image correlation (DIC)

 Liquid helium-cooled Janis Research dewar for materials testing with controlled temperature chamber

Accomplishments and Progress Thermomechanical Testing on Baseline Epoxy and Thermoplastic Liner Material

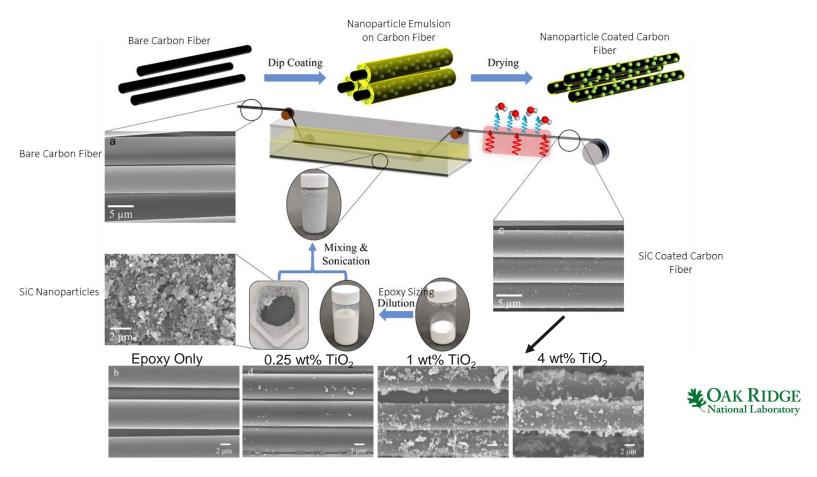
Tensile Properties

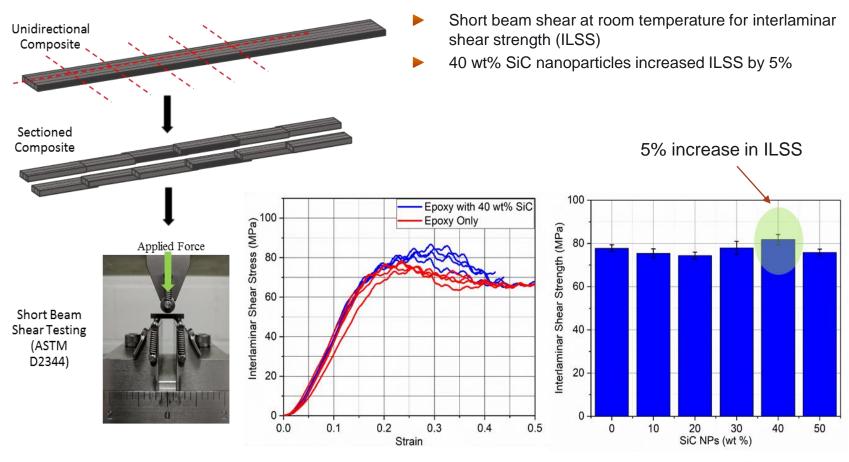

- ► Temperature-strain rate-dependent tensile properties measured at sub-ambient temperatures
 - Transformation will allow prediction of tensile properties at temperatures that are difficult to obtain in the laboratory


Dynamic Mechanical Properties

Dynamic mechanical analysis shows primary and secondary glass transitions and crystalline melting temperatures defining thermal regimes of mechanical performance change

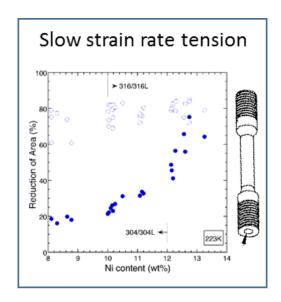
Thermal Contraction

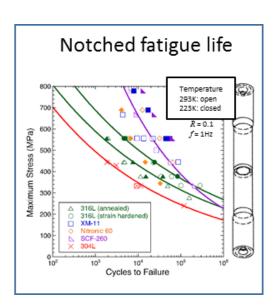

► Temperature-dependent linear thermal contraction measured through -140°C to +120°C

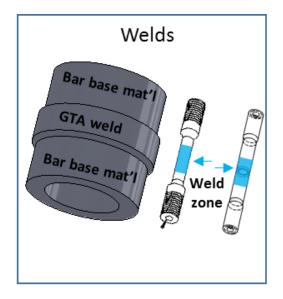

Approach Sizing Modification to Improve Interfacial Adhesion

Concentration of nanoparticles in solution

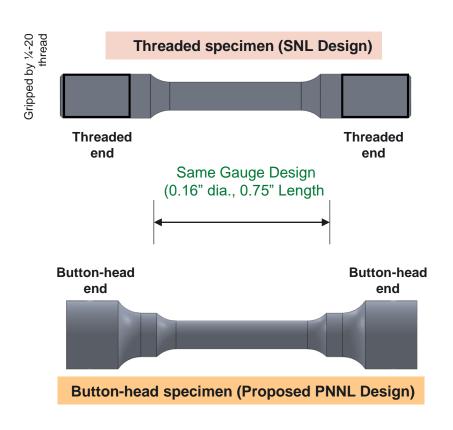
Accomplishments and Progress Preliminary Short Beam Shear Results





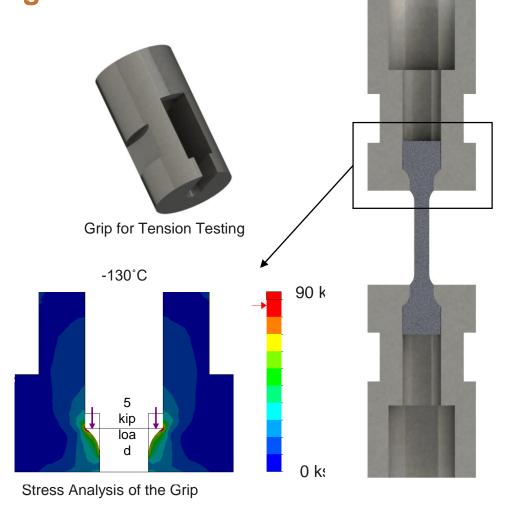

Approach Understanding Materials Behavior in Cryogenic Hydrogen Environments

- Establish baseline behavior of low-cost candidate materials in cryogenic hydrogen environments
 - Use H-precharging to overcome kinetics of hydrogen uptake
 - Evaluate high-performance welds and base materials of austenitic stainless steel:
 304L
 - Evaluate performance of aluminum base material: AA2219



Approach (some) Challenges in Low-temperature Testing Sample Design

- Sample handling → Limited maneuverability due to use of gloves/tongs etc. to handle samples at sub-zero temperature
- Sample gripping → Threaded ends can seize in the grips
 - Replace threaded end design with a button-head design for ease of installation and removal
- Load-frame capacity → Failure load of 304L (0.16" gauge dia.) <2,500 lbf @ 25°C and <4000 lbf at -130°C. PNNL's load frames can handle (upto 20,000 lbf)



Approach (some) Challenges in Low-temperature Testing: Grip design

- Button-head for rapid specimen fixturing between tests
- Grip material: Nitronic 60
 - $\sigma_y = 58 \text{ ksi at } 25^{\circ}\text{C}$
 - $\sigma_y = 85 \text{ ksi at -} 130^{\circ}\text{C}$
 - Maintains ductility at -253°C

Schedule

- · Grip fabrication: end of March
- Trial tension testing (-130°C, 304L): March/April
- LHe dewar delivery: March/April

Approach:

Cryo-compressed H₂ Vessel Modeling from Constituents to Tank Structure

Micro and Meso scales

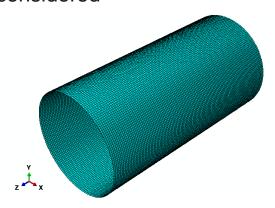
- CF & epoxy
 thermomechanical
 properties and
 stress/strain data as
 functions of temperature
- Homogenization & constitutive modeling (PNNL's EMTA & EMTA-NLA)

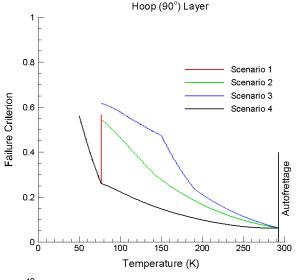
Macro scale 1

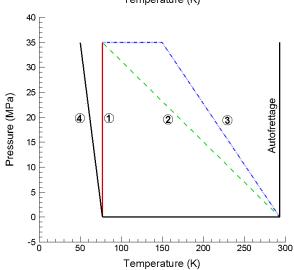
- Constitutive models validated on simple laminated specimens
- Predicted stress/strain responses and damage compared to experiments (EMTA-NLA/ABAQUS)

Macro scale 2

- Constitutive models validated on H₂ vessels
- Design vessel layup to sustain thermomechanical loadings (EMTA-NLA/ABAQUS)

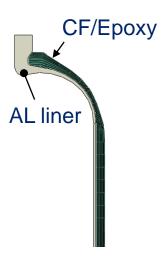


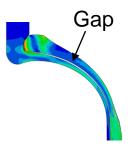

Accomplishments and Progress

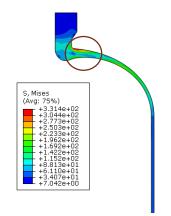

Type 3 H₂ Pressure Vessel Analysis

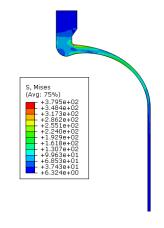
ABAQUS/EMTA-NLA

- Composite cylinder with aluminum liner modeled with 4 pressurization scenarios mimicking tank filling
- ► Layup: Al liner/90°/+10°/-10°/ (with respect to the axial direction)
- Model accounts for CTE of fiber and matrix variation with temperature
- Tank is predicted not to exceed failure criterion for the loading scenarios considered






Accomplishments and Progress FE Analysis of RT to 80K 50 MPa Cryo Hydrogen Tank



CF/Epoxy and aluminum liner after cooling down (80K)

FE model

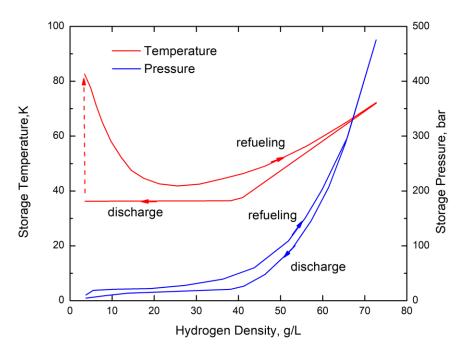
- 2D axisymmetric model
- Assuming no bonding at the interface between AL liner and composite material
- Applying burst pressure (2.25x 500 bar)
- Compared maximum strains along fiber direction

Sensitivity Analysis

- The matrix-dominant properties are considered for sensitivity analysis
- Found that any enhancement of shear stiffnesses has no effect on reducing the maximum fiber strain

Aluminum liner (80K) w/ empty pressure of 0.5 MPa

Steel liner (80K) w/ empty pressure of 0.5 MPa


- During cooling down step, cryo-tanks were empty. 0.5 MPa of empty pressure was applied. Both liner materials have the maximum stresses around the corner of the neck because composite layers resist to shrink.
- Plastic deformation did not occur in steel liner, but it occurred at the corner in aluminum liner.

Approach Fatigue loading scenario

- Fatigue cyclic loads are imposed on the same condition as the refueling and discharging process. In this condition, temperature and internal pressure range from 35K to 80K and from 5 bar to 500 bar, respectively
- Also, temperature cycling from RT to 80K will be considered for fatigue analysis

Source: IJHE Vol 43 2018 pp10215-10231

Accomplishment Summary

- Thermomechanical techniques for temperatures down to -140°C proven
- 5% increase in interlaminar shear strength by nanoparticle modifications
- Approach to testing H-charged steel and aluminum materials identified
- Pressure vessel modeling assuming literature values demonstrates tank survival
- Aluminum liner strain levels are high around the neck of the tank boss

Collaborative Activities

Partn	er	Project Roles
Pacific Northwest NATIONAL LABORATORY	PNNL	Project Lead, resin, cryogenic mechanical testing, constituent material modeling, joining properties
OAK RIDGE National Laboratory	ORNL	Interfacial surface modification of fibers and nanoparticulate resin modification for microcrack mitigation working with PNNL on cryo resins
Argonne MATOMAL IMPORATORY	ANL	FE full scale tank models integrated with PNNL constituent material models and cryogenic material data
Sandia National Laboratories	SNL	Hydrogen compatibility of liner materials and joining properties at cryogenic temperatures with PNNL

Proposed Future Work

Remainder FY19

- Cryogenic resin system testing
- Transformation model for resin property prediction at cryogenic temperatures
- Further modification of sizing and nanoparticle concentrations
- Exploring various nanomaterials of different compositions and aspect ratios
- Low temperature short beam shear strength testing
- Resin modification to further enhance strength and improve gas permeability
- Weld strength testing at ambient and cryogenic temperatures
- Modeling of fatigue scenarios

FY20

- Cryogenic composite testing
- Cryogenic testing of modified resins in composite materials
- Multiaxial material properties testing at subambient and cryogenic temperatures
- Modeling of multiaxial material test
- Model validation of component level testing

"Any proposed work is subject to change based on funding levels"