# **RWE`s former, current and possible future energy storage applications**

#### Jan Bernholz

Project Engineer, RWE Technology International GmbH

VGB KONGRESS & IERE WORKSHOP September, 13, 2018 – Munich, Germany

Zukumit, Sidher, Madhem.



Powering. Reliable. Future.

#### Agenda

- Introduction
- Pumped Hydro
- Power-to-Hydrogen
- Power-to-Heat
- Compressed air energy storage
- Battery storage
- Future applications

### RWE with clear focus on storage perspectives in core markets Germany, Netherlands and UK

#### Share of renewables expected to grow significantly in the next decade

- Political target is 65% share of renewables by 2030
- Regulatory environment not storagefriendly
- Political target is 49% emission reduction in 2030 (compared with 1990)
- Flexibility options including storage on the agenda of Energie-akkoord; process just started
- Political target is 40% reduction in emissions vs. 1990 but by 2030
- > The regulatory framework for storage is on the agenda, but no concrete details yet



### 2,500 hours with electricity surplus over the year on national level at 75% renewables

### Generation of electricity in a balanced scenario (generic)

Onshore Offshore Wind 25% 25% 600 TWh 25% 25% 25% PV biomass Duration curve of residual load<sup>1)</sup> for German electricity market at a 75% share of PV and Wind in GW



Source: Simulation of hourly residual load without export. RWE AG

### High share of renewables requires storage cycles of weeks and months

#### Exemplary calculation for a month of supply and demand with 75%-share of renewables



#### What market potential exists currently for energy storage?



#### **Pumped Hydro Principals**



Source: RWE Power

RWE's former, current and possible future energy storage applications

#### **Pumped Hydro Sites**





Pumped Hydro since 1906

Source: RWE Power

RWE's former, current and possible future energy storage applications

## Power-to-Hydrogen replaces conventional H<sub>2</sub> in chemical industry - existing H<sub>2</sub> infrastructure is used

Hydrogen sector coupling with the chemical industry

#### Use of hydrogen in Germany

 Hydrogen serves as an important raw material in the chemical industry, e.g. production of fuel

#### Potential for sector coupling

- > Natural gas can be stored and later used to generate electricity
- In the long term, around 10-20 TWh can be substituted without hydrogen intermediate storage

### Hydrogen production DE by primary energy carrier in TWh



## RWE's demonstration project has one of the highest total efficiencies for Power-to-Hydrogen plants worldwide

#### Key facts

- > Technology: PEM-Electrolyser
- > Rated: 150 kW<sub>el</sub>
- > H<sub>2</sub>-Production: 30 m<sup>3</sup>/h
- > Operation: since 2015
- > Total Efficiency: 86% (usage of waste heat)



Power-to-Hydrogen demonstration plant at Ibbenbüren



Source: Westnetz

## Power to Heat (PtH) provides the most efficient storage potential with development costs of less than 150 €kW.

#### Advantages and applications of PtH

- > Low investment costs for electric boiler: 100-150 €/kW
- > Use of hybrid systems, e.g. PtH + gas, allows flexible use of PtH systems in the event of excess electricity
- > Heat can be stored well, but requires very high volumes: at 30-40 kWh/m<sup>3</sup>

Efficiencies Power-to-Heat vs. total process "PtH & Saved Gas-to-Power"



#### Case study for an E-boiler at one of the RWE sites

#### **Specification for an E-boiler**

- > Case study for an E-boiler rated 20  $MW_{el}$
- > Efficiency: ~99 %
- > From 0 to full load in less than 30s
- > OPEX < 1% CAPEX/a
- > Implementation time less than 1 year after FID
- > CAPEX is guestimated at 3 million € for a 20 MW boiler including electrical connection

#### Flow heater and E-boiler





Source: RWE Technology International

#### Adiabatic compressed air energy storage (ADELE -Adiabater Druckluftspeicher für die Elektrizitätsversorgung)

#### Key facts

- > Developing components for an adiabatic compressed-air energy storage facility
- > Selecting a concept
- Clarifying all technical, economic and approval-law questions in connection with a demonstration project at Staßfurt
- > ADELE (until 06/2013): €12m, including
  €4.9m by RWE Power; BMWi funding
- Construction of a demonstration plant not implemented due to lack of economic viability
- > RWE parties involved, General Electric, DLR, etc.

Storage costs, depending on charge and discharge cycles p.a., in **∉**MWh<sup>1)</sup>



Source: RWE Power

## Large scale battery storage pilot in Herdecke to explore new technologies in existing markets

#### **Specifications**

- > Technology: Lithium-Ion
- > Capacity: 3 x 2.538 kWh
- > 552 batteries
- > Revenue: mainly PRL
- > Investment: approx. 6 million €
- > Operation: since Jan. 2018

#### Battery storage at Herdecke



Source: RWE Generation

#### **Electric vehicle charging stations at the new RWE Campus**

#### Charging stations for electric vehicles

- > Electric vehicle charging stations: 22 kW
- > Capacity: depending on car battery
- > Operation: Q3 2020

#### Electric Vehicles @ RWE Campus



Source: RWE AG

# Thank you very much for your attention

Powering. Reliable. Future.

RWE